翻訳と辞書
Words near each other
・ Quasi-constitutionality
・ Quasi-continuous function
・ Quasi-contract
・ Quasi-criminal
・ Quasi-crystals (supramolecular)
・ Quasi-delict
・ Quasi-derivative
・ Quasi-elemental
・ Quasi-empirical method
・ Quasi-empiricism in mathematics
・ Quasi-experiment
・ Quasi-fibration
・ Quasi-finite field
・ Quasi-finite morphism
・ Quasi-foreign corporation
Quasi-Frobenius Lie algebra
・ Quasi-Frobenius ring
・ Quasi-Fuchsian group
・ Quasi-geostrophic equations
・ Quasi-harmonic approximation
・ Quasi-Hilda comet
・ Quasi-homogeneous polynomial
・ Quasi-Hopf algebra
・ Quasi-identifier
・ Quasi-invariant measure
・ Quasi-irreversible inhibitor
・ Quasi-isometry
・ Quasi-isomorphism
・ Quasi-judicial body
・ Quasi-judicial proceedings


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-Frobenius Lie algebra : ウィキペディア英語版
Quasi-Frobenius Lie algebra
In mathematics, a quasi-Frobenius Lie algebra
:(\mathfrak,(),\beta )
over a field k is a Lie algebra
:(\mathfrak,() )
equipped with a nondegenerate skew-symmetric bilinear form
:\beta : \mathfrak\times\mathfrak\to k, which is a Lie algebra 2-cocycle of \mathfrak with values in k. In other words,
:: \beta \left(\left(),Z\right)+\beta \left(\left(),Y\right)+\beta \left(\left(),X\right)=0
for all X, Y, Z in \mathfrak.
If \beta is a coboundary, which means that there exists a linear form f : \mathfrak\to k such that
:\beta(X,Y)=f(\left()),
then
:(\mathfrak,(),\beta )
is called a Frobenius Lie algebra.
== Equivalence with pre-Lie algebras with nondegenerate invariant skew-symmetric bilinear form ==
If (\mathfrak,(),\beta ) is a quasi-Frobenius Lie algebra, one can define on \mathfrak another bilinear product \triangleleft by the formula
:: \beta \left(\left(),Z\right)=\beta \left(Z \triangleleft Y,X \right) .
Then one has
\left()=X \triangleleft Y-Y \triangleleft X and
:(\mathfrak, \triangleleft)
is a pre-Lie algebra.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-Frobenius Lie algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.